Bajos niveles de variación isoenzimática en las poblaciones sureñas del arbusto endémico de Corea Sophora koreensis (Fabaceae): implicaciones para su conservación

Autores/as

DOI:

https://doi.org/10.3989/collectbot.2017.v36.006

Palabras clave:

conservación, Corea, diversidad genética, isoenzimas, Sophora koreensis

Resumen


Se investigó la variación isoenzimática del arbusto raro Sophora koreensis en el condado de Yanggu (Corea del Sur), en el extremo sur de su área de distribución. Para obtener información sobre los procesos ecológicos a nivel del paisaje, se estudiaron dos o tres poblaciones para cada una de las cuatro localidades (en total, 10 poblaciones) en un radio de unos 6 km. Se encontraron bajos niveles de variación genética intra-poblacional (%P = 13,6, A = 1,14 y He = 0,026) y un grado moderado de diferenciación genética entre poblaciones (FST = 0,203). El análisis de la varianza molecular (AMOVA) reveló un porcentaje sustancialmente mayor de variación entre poblaciones dentro cada una de las localidades (17%) que entre localidades (5%). No hubo una relación significativa entre la divergencia genética y el logaritmo de la distancia geográfica entre pares de poblaciones (r = 0,032, P = 0,842). Estos resultados sugieren un flujo genético limitado entre poblaciones dentro de las localidades, además de indicar que la mejor estrategia para la preservación de la diversidad genética de S. koreensis es la conservación del máximo número de poblaciones posible.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Chang, C. S., Kim, H., Son, S. & Kim, Y.-S. 2016. The Red list of selected vascular plants in Korea. Korea National Arboretum and Korean Plant Specialist Group, Pocheon.

Chang, C. S., Lee, H. S., Park, T. Y. & Kim, H. 2005. IUCN Reconsideration of rare and endangered plant species in Korea based on the IUCN red list categories. Korean Journal of Ecology 28: 305–320 [in Korean]. https://doi.org/10.5141/JEFB.2005.28.5.305

Cheliak, W. M. & Pitel, J. P. 1984. Technique for starch gel electrophoresis of enzyme from forest tree species. Information report PI-X-42. Petawawa National Forestry Institute, Chalk River. PMid:24253705

Cheon, K.-S., Jang, S.-K., Lee, W.-T. & Yoo, K.-O. 2009. The natural habitat and distribution of Echinosophora koreensis (Nakai) Nakai in Korea. Korean Journal of Plant Taxonomy 39: 254–263 [in Korean].

Chung, J. M., Lee, B. C., Kim, J. S., Park, C.W., Chung, M. Y. & Chung, M. G. 2006. Fine-scale structure among genetic individuals of the clone-forming monotypic genus Echinosophora koreensis (Fabaceae). Annals of Botany 98: 165–173. https://doi.org/10.1093/aob/mcl083 PMid:16675603 PMCid:PMC2803556

Chung, M. Y., López-Pujol, J. & Chung, M. G. 2017. The role of the Baekdudaegan (Korean Peninsula) as a major glacial refugium for plant species: A priority for conservation. Biological Conservation, 206: 236–248. https://doi.org/10.1016/j.biocon.2016.11.040

Chung, M. Y., Nason, J. D. & Chung, M. G. 2004. Implications of clonal structure for effective population size and genetic drift in a rare terrestrial orchid, Cremastra appendiculata (Orchidaceae). Conservation Biology 18: 1515–1524. https://doi.org/10.1111/j.1523-1739.2004.00291.x

Chung, M. Y., Nason, J. D., Chung, M. G., Kim, K.-J., Park, C.- W., Sun, B.-Y. & Pak, J.-H. 2002. Landscape-level spatial genetic structure in Quercus acutissima (Fagaceae). American Journal of Botany 89: 1229–1236. https://doi.org/10.3732/ajb.89.8.1229 PMid:21665723

Clayton, J. W. & Tretiak, D. N. 1972. Amine citrate buffers for pH control in starch gel electrophoresis. Journal of the Fisheries Research Board of Canada 29: 1169–1172. https://doi.org/10.1139/f72-172

Crawford, D. J., Ruiz, E., Stuessy, T. F. et al. 2001. Allozyme diversity in endemic flowering plant species of the Juan Fernandez Archipelago, Chile: ecological and historical factors with implications for conservation. American Journal of Botany 88: 2195–2203. https://doi.org/10.2307/3558381 PMid:21669652

Eckert, C. G., Samis, K. E. & Lougheed, S. C. 2008. Genetic variation across species' geographical ranges: the central-marginal hypothesis and beyond. Molecular Ecology 17: 1170–1188. https://doi.org/10.1111/j.1365-294X.2007.03659.x PMid:18302683

El Mousadik, A. & Petit, R. J. 1996 . High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theoretical and Applied Genetics 92 : 832–839. https://doi.org/10.1007/BF00221895 PMid:24166548

Falk, D. A. & Holsinger, K. E. (Eds.) 1991. Genetics and conservation of rare plants. Oxford University Press, Oxford.

Gibson, J. P. & Hamrick, J. L. 1991. Genetic diversity and structure in Pinus pungens (table mountain pine) populations. Canadian Journal of Forest Research 21: 635–642. https://doi.org/10.1139/x91-087

Goudet, J. 2002. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). Department of Ecology & Evolution, University de Lausanne, Lausanne. Retrieved May 13, 2011, from: http://www.unil.ch/izea/softwares/fstat.html

Hamrick, J. L. & Godt, M. J. W. 1989. Allozyme diversity in plant species. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. & Weir, B. S. (Eds.), Plant population genetics, breeding and genetic resources. Sinauer, Sunderland: 43–63.

Hamrick, J. L. & Godt, M. J. W. 1996. Conservation genetics of endemic plant species. In: Avise, J. C. & Hamrick, J. L. (Eds.), Conservation genetics. Chapman & Hall, New York: 281–304. https://doi.org/10.1007/978-1-4757-2504-9_9

Hardy, O. J. & Vekemans, X. 2002. SPAGeDi: a versatile computer program to analyze spatial genetic structure at the individual or population level. Molecular Ecology Notes 2: 618–620. https://doi.org/10.1046/j.1471-8286.2002.00305.x

IUCN (International Union for Conservation of Nature) 2001.

IUCN Red List Categories: Version 3.1. IUCN, Gland & Cambridge.

Kim, I. R., Yu, D. & Choi, H.-K. 2015. AFLP A phytogeographical study of Sasa borealis populations based on AFLP analysis. Korean Journal of Plant Taxonomy 45: 29–35 [in Korean]. https://doi.org/10.11110/kjpt.2015.45.1.29

Kim, Y.-S., Kim, H. & Son, S.-W. 2016. Sophora koreensis. The IUCN Red List of Threatened Species 2016: e.T13188557A13189529. Retrieved December 5, 2016.

Kim, Z. S., Hwang, J. W., Lee, S. W., Yang, C. & Gorovoy, P. G. 2005. Genetic variation of Korean pine (Pinus koraiensis Sieb. et Zucc.) at allozyme and RAPD markers in Korea, China and Russia. Silvae Genetica 54: 235–246. https://doi.org/10.1515/sg-2005-0034

Langella, O. 1999. Populations version 1.2.30. Retrieved August 14, 2013, from http://bioinformatics.org/~tryphon/ populations/

Lee, J.-Y., Lee, D.-H. & Choi, B.-H. 2012. Isolation and characterization of 13 microsatellite loci from a Korean endemic species, Sophora koreensis (Fabaceae). International Journal of Molecular Sciences 13: 10765–10770. https://doi.org/10.3390/ijms130910765 PMid:23109821 PMCid:PMC3472713

Lee, W. K., Toru, T. & Heo, K. 2004. Molecular evidence for inclusion of the Korean endemic genus "Echinosophora" in Sophora (Fabaceae), and embryological features of the genus. Journal of Plant Research 117: 209–219. https://doi.org/10.1007/s10265-004-0150-x PMid:15221584

Lee, W. T. 1996 Standard illustrations of Korean plants. Academy Publishing Co., Seoul [in Korean].

Liu, Z.-M., Zhao, A.-M., Kang, X.-Y., Zhou, S.-L. & López-Pujol, J. 2006. Genetic diversity, population structure, and conservation of Sophora moorcroftiana (Fabaceae), a shrub endemic to the Tibetan Plateau. Plant Biology 8: 81–92. https://doi.org/10.1055/s-2005-872889 PMid:16435272

Mitton, J. B., Linhart, Y. B., Sturgeon, K. B. & Hamrick, J. L. 1979. Allozyme polymorphisms detected in mature needle tissue of ponderosa pine. Journal of Heredity 70: 86–89. https://doi.org/10.1093/oxfordjournals.jhered.a109220

MOE (Ministry of Environment, Republic of Korea) 2012 Red data book of endangered vascular plants in Korea]. National Institute of Biological Resources, Incheon [in Korean]

Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70: 3321–3323. https://doi.org/10.1073/pnas.70.12.3321 PMid:4519626 PMCid:PMC427228

Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590. PMid:17248844 PMCid:PMC1213855

Nei, M., Tajima, F. & Tateno, Y. 1983. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. Journal of Molecular Evolution 19:153–170. https://doi.org/10.1007/BF02300753

Oh, B. U., Han, J. W., Yang, S. K., Jang, E. S., Jang, C. G., Kim, Y. Y. & Kang, S. H. 2009. [Flora and vegetation in a habitat of Echinosophora koreensis (Nakai) Nakai (Leguminosae), a Korean endemic plant in Yanggu-gun (Kangwon), Korea–Focused on Jukgok-ri and Hwanggang-ri]. Journal of the Korea Society of Environmental Restoration Technology 12: 19–28 [in Korean].

Page, R. D. M. 1996. TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Bioscience 12: 357–358. PMid:8902363

Peakall, R. & Smouse, P. E. 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

Quick, Z. I., Houseman, G. R. & Büyüktahtakin, I. E. 2017. Assessing wind and mammals as seed dispersal vectors in an invasive legume. Weed Research 57: 35–43. https://doi.org/10.1111/wre.12232

Ra, U. C., Park, H.-S., Ju, I.-Y. et al. 2005. Red data book of DPR Korea (plant). MAB National Committee of DPR Korea, Botanical Institute, Biological Branch, Academy of Sciences, Pyongyang.

Rousset, F. 1997. Genetic differentiation within and between two habitats. Genetics 151: 397–407.

Schnabel, A. & Hamrick, J. L. 1990. Organization of genetic diversity within and among populations of Gleditsia triacanthos (Leguminosae). American Journal of Botany 77: 1060–1069. https://doi.org/10.1002/j.1537-2197.1990.tb13601.x

Soltis, D. E., Haufler, C. H., Darrow, D. C. & Gastony, G. J. 1983. Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. American Fern Journal 73: 9–27. https://doi.org/10.2307/1546611

Weir, B. S. & Cockerham, C. C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370. PMid:28563791

Williams, C. F. 1994. Genetic consequences of seed dispersal in three sympatric forest herbs. II. Microspatial genetic structure within populations. Evolution 48: 1959–1972. https://doi.org/10.1111/j.1558-5646.1994.tb02226.x PMid:28565156

Williams, C. F. & Guries, R. P. 1994. Genetic consequences of seed dispersal in three sympatric forest herbs. I. Hierarchical population genetic structure. Evolution 48: 791–805. https://doi.org/10.1111/j.1558-5646.1994.tb01362.x PMid:28568276

Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395–420. https://doi.org/10.1111/j.1558-5646.1965.tb01731.x

Yeh, F. C., Yang, R. C. & Boyle, T. B. J. 1999. POPGENE. Version 1.31. Microsoft Windows-based free ware for population genetic analysis. Department of Renewable Resources, University of Alberta, Edmonton. Retrieved March 12, 2011, from http://www.ualberta.ca/~fyeh/index/htm

Yim, K.-B. 1993.[Botanical treasures (natural monuments) of Korea]. Daewonsa, Seoul [in Korean].

Publicado

2017-12-30

Cómo citar

Chung, M. Y., & Chung, M. G. (2017). Bajos niveles de variación isoenzimática en las poblaciones sureñas del arbusto endémico de Corea Sophora koreensis (Fabaceae): implicaciones para su conservación. Collectanea Botanica, 36, e006. https://doi.org/10.3989/collectbot.2017.v36.006

Número

Sección

Artículos